2,112 research outputs found

    The distribution of plasmids that carry virulence and resistance genes in Staphylococcus aureus is lineage associated.

    Get PDF
    BACKGROUND: Staphylococcus aureus is major human and animal pathogen. Plasmids often carry resistance genes and virulence genes that can disseminate through S. aureus populations by horizontal gene transfer (HGT) mechanisms. Sequences of S. aureus plasmids in the public domain and data from multi-strain microarrays were analysed to investigate (i) the distribution of resistance genes and virulence genes on S. aureus plasmids, and (ii) the distribution of plasmids between S. aureus lineages. RESULTS: A total of 21 plasmid rep gene families, of which 13 were novel to this study, were characterised using a previously proposed classification system. 243 sequenced plasmids were assigned to 39 plasmid groups that each possessed a unique combination of rep genes. We show some resistance genes (including ermC and cat) and virulence genes (including entA, entG, entJ, entP) were associated with specific plasmid groups suggesting there are genetic pressures preventing recombination of these genes into novel plasmid groups. Whole genome microarray analysis revealed that plasmid rep, resistance and virulence genes were associated with S. aureus lineages, suggesting restriction-modification (RM) barriers to HGT of plasmids between strains exist. Conjugation transfer (tra) complex genes were rare. CONCLUSION: This study argues that genetic pressures are restraining the spread of resistance and virulence genes amongst S. aureus plasmids, and amongst S. aureus populations, delaying the emergence of fully virulent and resistant strains

    Staphylococcus aureus temperate bacteriophage: carriage and horizontal gene transfer is lineage associated.

    Get PDF
    Staphylococcus aureus is a major cause of human and animal infections. Bacteriophage are a class of mobile genetic element (MGE) that carry virulence genes and disseminate them horizontally, including Panton-Valentine leukocidin (PVL), the immune evasion cluster (IEC) associated with human specificity, and enterotoxin A the major toxin associated with food poisoning. S. aureus isolates group into major clonal complex (CC) lineages that largely evolve independently due to possession of different restriction-modification (RM) systems. We aimed to better understand the horizontal and vertical transmission dynamics of virulence and resistance genes by bacteriophage by using (i) bioinformatic approaches to analyze bacteriophage genomes from the first 79 sequenced S. aureus isolates and (ii) S. aureus microarrays to analyze the distribution of bacteriophage and virulence genes in S. aureus isolates from a broader range of lineages. The distribution of eight bacteriophage families was highly variable but lineage associated. Nevertheless, there was evidence of frequent acquisition and loss and not just vertical transmission. Most bacteriophage genes were dispensable, and extensive mosaicism was seen. Surprisingly, virulence genes were tightly associated with specific phage families. This data suggests S. aureus bacteriophage evolve rapidly, and the horizontal gene transfer (HGT) of virulence genes encoded by bacteriophage is restricted by bacteriophage family and the lineage of the host bacterium, delaying the evolution of fully resistant and virulent strains

    Shuffling of mobile genetic elements (MGEs) in successful healthcare-associated MRSA (HA-MRSA).

    Get PDF
    Methicillin-resistant Staphylococcus aureus (MRSA) CC22 SCCmecIV is a successful hospital-associated (HA-) MRSA, widespread throughout the world, and now the dominant clone in UK hospitals. We have recently shown that MRSA CC22 is a particularly fit clone, and it rose to dominance in a UK hospital at the same time as it began acquiring an increased range of antibiotic resistances. These resistances were not accumulated by individual CC22 isolates, but appear to shuffle frequently between isolates of the MRSA CC22 population. Resistances are often encoded on mobile genetic elements (MGEs) that include plasmids, transposons, bacteriophage and S. aureus pathogenicity islands (SaPIs). Using multi-strain whole genome microarrays, we show that there is enormous diversity of MGE carried within a MRSA CC22 SCCmecIV population, even among isolates from the same hospital and time period. MGE profiles were so variable that they could be used to track the spread of variant isolates within the hospital. We exploited this to show that the majority of patients colonised with MRSA at hospital admission that subsequently became infected were infected with their own colonising isolate. Our studies reveal MGE spread, stability, selection and clonal adaptation to the healthcare setting may be key to the success of HA-MRSA clones, presumably by allowing rapid adaptation to antibiotic exposure and new hosts

    Extensive horizontal gene transfer during Staphylococcus aureus co-colonization in vivo.

    Get PDF
    Staphylococcus aureus is a commensal and major pathogen of humans and animals. Comparative genomics of S. aureus populations suggests that colonization of different host species is associated with carriage of mobile genetic elements (MGE), particularly bacteriophages and plasmids capable of encoding virulence, resistance, and immune evasion pathways. Antimicrobial-resistant S. aureus of livestock are a potential zoonotic threat to human health if they adapt to colonize humans efficiently. We utilized the technique of experimental evolution and co-colonized gnotobiotic piglets with both human- and pig-associated variants of the lineage clonal complex 398, and investigated growth and genetic changes over 16 days using whole genome sequencing. The human isolate survived co-colonization on piglets more efficiently than in vitro. During co-colonization, transfer of MGE from the pig to the human isolate was detected within 4 h. Extensive and repeated transfer of two bacteriophages and three plasmids resulted in colonization with isolates carrying a wide variety of mobilomes. Whole genome sequencing of progeny bacteria revealed no acquisition of core genome polymorphisms, highlighting the importance of MGE. Staphylococcus aureus bacteriophage recombination and integration into novel sites was detected experimentally for the first time. During colonization, clones coexisted and diversified rather than a single variant dominating. Unexpectedly, each piglet carried unique populations of bacterial variants, suggesting limited transmission of bacteria between piglets once colonized. Our data show that horizontal gene transfer occurs at very high frequency in vivo and significantly higher than that detectable in vitro

    Comparative host specificity of human- and pig- associated Staphylococcus aureus clonal lineages.

    Get PDF
    Bacterial adhesion is a crucial step in colonization of the skin. In this study, we investigated the differential adherence to human and pig corneocytes of six Staphylococcus aureus strains belonging to three human-associated [ST8 (CC8), ST22 (CC22) and ST36(CC30)] and two pig-associated [ST398 (CC398) and ST433(CC30)] clonal lineages, and their colonization potential in the pig host was assessed by in vivo competition experiments. Corneocytes were collected from 11 humans and 21 pigs using D-squame® adhesive discs, and bacterial adherence to corneocytes was quantified by a standardized light microscopy assay. A previously described porcine colonization model was used to assess the potential of the six strains to colonize the pig host. Three pregnant, S. aureus-free sows were inoculated intravaginally shortly before farrowing with different strain mixes [mix 1) human and porcine ST398; mix 2) human ST36 and porcine ST433; and mix 3) human ST8, ST22, ST36 and porcine ST398] and the ability of individual strains to colonize the nasal cavity of newborn piglets was evaluated for 28 days after birth by strain-specific antibiotic selective culture. In the corneocyte assay, the pig-associated ST433 strain and the human-associated ST22 and ST36 strains showed significantly greater adhesion to porcine and human corneocytes, respectively (p<0.0001). In contrast, ST8 and ST398 did not display preferential host binding patterns. In the in vivo competition experiment, ST8 was a better colonizer compared to ST22, ST36, and ST433 prevailed over ST36 in colonizing the newborn piglets. These results are partly in agreement with previous genetic and epidemiological studies indicating the host specificity of ST22, ST36 and ST433 and the broad-host range of ST398. However, our in vitro and in vivo experiments revealed an unexpected ability of ST8 to adhere to porcine corneocytes and persist in the nasal cavity of pigs

    What Is the Origin of Livestock-Associated Methicillin-Resistant Staphylococcus aureus Clonal Complex 398 Isolates from Humans without Livestock Contact? An Epidemiological and Genetic Analysis.

    Get PDF
    Fifteen percent of all methicillin-resistant Staphylococcus aureus (MRSA) clonal complex 398 (CC398) human carriers detected in The Netherlands had not been in direct contact with pigs or veal calves. To ensure low MRSA prevalence, it is important to investigate the likely origin of this MRSA of unknown origin (MUO). Recently, it was shown that CC398 strains originating from humans and animals differ in the presence of specific mobile genetic elements (MGEs). We hypothesized that determining these specific MGEs in MUO isolates and comparing them with a set of CC398 isolates of various known origin might provide clues to their origin. MUO CC398 isolates were compared to MRSA CC398 isolates obtained from humans with known risk factors, a MRSA CC398 outbreak isolate, livestock associated (LA) MRSA CC398 isolates from pigs, horses, chickens, and veal calves, and five methicillin-susceptible Staphylococcus aureus (MSSA) CC398 isolates of known human origin. All strains were spa typed, and the presence or absence of, scn, chp, φ3 int, φ6 int, φ7 int, rep7, rep27, and cadDX was determined by PCRs. The MRSA CC398 in humans, MUO, or MRSA of known origin (MKO) resembled MRSA CC398 as found in pigs and not MSSA CC398 as found in humans. The distinct human MSSA CC398 spa type, t571, was not present among our MRSA CC398 strains; MRSA CC398 was tetracycline resistant and carried no φ3 bacteriophage with scn and chp. We showed by simple PCR means that human MUO CC398 carriers carried MRSA from livestock origin, suggestive of indirect transmission. Although the exact transmission route remains unknown, direct human-to-human transmission remains a possibility as well

    Phage-mediated horizontal transfer of a Staphylococcus aureus virulence-associated genomic island

    Get PDF
    Staphylococcus aureus is a major pathogen of humans and animals. The capacity of S. aureus to adapt to different host species and tissue types is strongly influenced by the acquisition of mobile genetic elements encoding determinants involved in niche adaptation. The genomic islands νSaα and νSaβ are found in almost all S. aureus strains and are characterized by extensive variation in virulence gene content. However the basis for the diversity and the mechanism underlying mobilization of the genomic islands between strains are unexplained. Here, we demonstrated that the genomic island, νSaβ, encoding an array of virulence factors including staphylococcal superantigens, proteases, and leukotoxins, in addition to bacteriocins, was transferrable in vitro to human and animal strains of multiple S. aureus clones via a resident prophage. The transfer of the νSaβ appears to have been accomplished by multiple conversions of transducing phage particles carrying overlapping segments of the νSaβ. Our findings solve a long-standing mystery regarding the diversification and spread of the genomic island νSaβ, highlighting the central role of bacteriophages in the pathogenic evolution of S. aureus
    corecore